Low Complexity Algorithmic Trading by Feedforward Neural Networks

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circuit Complexity and Feedforward Neural Networks

Circuit complexity, a subfield of computational complexity theory, can be used to analyze how the resource usage of neural networks scales with problem size. The computational complexity of discrete feedforward neural networks is surveyed, with a comparison of classical circuits to circuits constructed from gates that compute weighted majority functions.

متن کامل

Placing Feedforward Neural Networks Among Several Circuit Complexity Classes

This paper examines the circuit complexity of feedforward neural networks having sigmoid activation function. The starting point is the complexity class NN defined in [18]. First two additional complexity classes NN∆ k and NN∆,ε k having less restrictive conditions (than NN) concerning fan-in and accuracy are defined. We then prove several relations among these three classes and well establishe...

متن کامل

Classes of feedforward neural networks and their circuit complexity

-Th& paper aims to p&ce neural networks in the conte.\t ol'booh'an citz'ldt complexit.l: 1,1~, de/itte aplm~priate classes qlfeedybrward neural networks with specified fan-in, accm'ac)' olcomputation and depth and ttsing techniques" o./commzmication comph:¥ity proceed to show t/tat the classes.fit into a well-studied hieralz'h)' q/boolean circuits. Results cover both classes of sigmoid activati...

متن کامل

c - Entropy and the Complexity of Feedforward Neural Networks

We develop a. new feedforward neuralnet.work represent.ation of Lipschitz functions from [0, p]n into [0,1] ba'3ed on the level sets of the function. We show that ~~ + ~€r + ( 1 + h) (:~) n is an upper bound on the number of nodes needed to represent f to within uniform error Cr, where L is the Lipschitz constant. \Ve also show that the number of bits needed to represent the weights in the netw...

متن کامل

The computational power and complexity of discrete feedforward neural networks

The number of binary functions that can be defined on a set of L vectors in N R equals 2 . For L > N the total number of threshold functions in N-dimensional space grows polynomially , while the total number of Boolean functions, definable on N binary inputs, grows exponentially ( ), and as N increases a percentage of threshold functions in relation to the total number of Boolean functions – go...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Economics

سال: 2017

ISSN: 0927-7099,1572-9974

DOI: 10.1007/s10614-017-9720-6